Erratum: High-field magnetoconductivity of electrons on hydrogen [Phys. Rev. B 37, 3805 (1988)] P. W. Adams and M. A. Paalanen The expression for σ_{xx} appearing in Eq. (2) is in error. The correct expression includes a contribution from both spin species, and can be written as $$\sigma_{xx} = \frac{ae^2}{2\pi\hbar} \int_{-\infty}^{\infty} dE \left[\frac{-\partial f}{\partial E} \right] \sum_{N=0}^{\infty} (N + \frac{1}{2}) \left[\exp \left[\frac{-4(E - E_N - \Delta S)^2}{\Gamma^2} \right] + \exp \left[\frac{-4(E - E_N + \Delta S)^2}{\Gamma^2} \right] \right],$$ where $\Delta S = g\mu_B B/2$ and α is an adjustable parameter. Theoretically α should be unity but we obtained reasonably good fits with $\alpha = 2$. The origin of this discrepancy, which was also observed by Van De Sanden et al. (Ref. 8), is not under- The density of states used in the above expression for σ_{xx} is $$D(E) = \frac{1}{2\pi l_0^2} \left(\frac{2}{\pi} \right)^{1/2} \frac{1}{\Gamma} \sum_{N=0}^{\infty} \left[\exp\left(\frac{-2(E - E_N - \Delta S)^2}{\Gamma^2} \right) + \exp\left(\frac{-2(E - E_N - \Delta S)^2}{\Gamma^2} \right) \right],$$ which is equivalent to that quoted in Eq. (4). However, one can easily show using the above expression that, after normalizing, σ_{xx} is independent of ΔS and the Zeeman splitting plays no role in the transport. We wish to thank Dr. F. M. Peeters for the enlighting discussions which have led to the present revisions.